Капсулы нефронов находятся

Капсулы нефронов находятся

Структурно-функциональной единицей почки является нефрон, состоящий из сосудистого клубочка, его капсулы (почечное тельце) и системы канальцев, ведущих в собирательные трубки (рис.3). Последние морфологически не относятся к нефрону.

Рисунок 3. Схема строения нефрона (8).

В каждой почке человека имеется около 1 млн. нефронов, с возрастом их количество постепенно уменьшается. Клубочки расположены в корковом слое почки, из них 1/10-1/15 часть находятся на границе с мозговым слоем и называются юкстамедуллярными. Они имеют длинные петли Генле, углубляющиеся в мозговое вещество и способствующие более эффективной концентрации первичной мочи. У детей грудного возраста клубочки имеют малый диаметр и их общая фильтрующая поверхность значительно меньше, чем у взрослых.

Строение почечного клубочка

Клубочек покрыт висцеральным эпителием (подоцитами), который у сосудистого полюса клубочка переходит в париетальный эпителий капсулы Боумена. Боуменово (мочевое) пространство непосредственно переходит в просвет проксимального извитого канальца. Кровь поступает в сосудистый полюс клубочка через афферентную (приносящую) артериолу и, после прохождения по петлям капилляров клубочка, покидает его по эфферентной (выносящей) артериоле, имеющей меньший просвет. Сжатие выносящей артериолы увеличивает гидростатическое давление в клубочке, что способствует фильтрации. Внутри клубочка афферентная артериола подразделяется на несколько ветвей, которые в свою очередь дают начало капиллярам нескольких долек (рис. 4А). В клубочке имеется около 50 капиллярных петель, между которыми были найдены анастомозы, позволяющие функционировать клубочку как «диализирующая система». Стенка капилляра клубочка представляет собой тройной фильтр, включающий фенестрированный эндотелий, гломерулярную базальную мембрану и щелевые диафрагмы между ножками подоцитов (рис.4Б).

Рисунок 4. Строение клубочка (9).

А – клубочек, АА – афферентная артериола (электронная микроскопия).

Б – схема строения капиллярной петли клубочка.

Прохождение молекул через фильтрационный барьер зависит от их размера и электрического заряда. Вещества с молекулярным весом >50.000 Да почти не фильтруются. Из-за отрицательного заряда в нормальных структурах клубочкового барьера анионы задерживаются в большей степени, чем катионы. Эндотелиальные клетки имеют поры или фенестры диаметром около 70 нм. Поры окружены гликопротеидами, имеющими отрицательный заряд, представляют своеобразное сито, через которые происходит ультрафильтрация плазмы, но задерживаются форменные элементы крови. Гломерулярная базальная мембрана (ГБМ) представляет непрерывный барьер между кровью и полостью капсулы, и у взрослого человека имеет толщину 300-390 нм (у детей тоньше – 150-250 нм) (рис. 5). ГБМ так же содержит большое количество отрицательно заряженных гликопротеидов. Она состоит из трех слоев: а) lamina rara externa; б) lamina densa и в) lamina rara interna. Важной структурной частью ГБМ является коллаген IV типа. У детей с наследственным нефритом, клинически проявляющимся гематурией, выявляются мутации коллагена IV типа. Патология ГБМ устанавливается электронно-микроскопическим исследованием биоптата почек.

Рисунок 5. Стенка капилляра клубочка – гломерулярный фильтр (9).

Снизу расположен фенестрированный эндотелий, над ним – ГБМ, на которой отчетливо видны регулярно расположенные ножки подоцитов (электронная микроскопия).

Висцеральные эпителиальные клетки клубочка , подоциты, поддерживают архитектуру клубочка, препятствуют прохождению белка в мочевое пространство, а также синтезируют ГБМ. Это высокоспециализированные клетки мезенхимального происхождения. От тела подоцитов отходят длинные первичные отростки (трабекулы), концы которых имеют «ножки», прикрепленные к ГБМ. Малые отростки (педикулы) отходят от больших почти перпендикулярно и закрывают собой свободное от больших отростков пространство капилляра (рис. 6А). Между соседними ножками подоцитов натянута фильтрационная мембрана – щелевая диафрагма, которая в последние десятилетия представляет собой предмет многочисленных исследований (рис. 6Б).

Рисунок 6. Строение подоцита (9).

А – ножки подоцитов полностью покрывают ГБМ (электронная микроскопия).

Б – схема фильтрационного барьера.

Щелевые диафрагмы состоят из белка нефрина, который тесно связан в структурном и функциональном отношениях со множеством других белковых молекул: подоцином, СД2АР, альфа-актинином-4 и др. В настоящее время установлены мутации генов, кодирующих белки подоцитов. Например, дефекта гена NРНS1 приводит к отсутствию нефрина, что имеет место при врожденном нефротическом синдроме финского типа. Повреждения подоцитов вследствие воздействия вирусных инфекций, токсинов, иммунологических факторов, а также генетических мутаций могут привести к протеинурии и развитию нефротического синдрома, морфологическим эквивалентом которого независимо от причины является расплавление ножек подоцитов. Наиболее частым вариантом нефротического синдрома у детей является идиопатический нефротический синдром с минимальными изменениями.

В состав клубочка входят так же мезангиальные клетки, основная функция которых – обеспечение механической фиксации капиллярных петель. Мезангиальные клетки обладают сократительной способностью, влияя на клубочковый кровоток, а так же фагоцитарной активностью (Рис. 4Б).

Почечные канальцы

Первичная моча попадает в проксимальные почечные канальцы и подвергается там качественным и количественным изменениям за счет секреции и реабсорбции веществ. Проксимальные канальцы – самый длинный сегмент нефрона, в начале он сильно изогнут, а при переходе в петлю Генле выпрямляется. Клетки проксимального канальца (продолжение париетального эпителия капсулы клубочка) цилиндрической формы, со стороны просвета покрыты микроворсинками («щеточная кайма”). Микроворсинки увеличивают рабочую поверхность эпителиальных клеток, обладающих высокой энзиматической активностью. Они содержат много митохондрий, рибосом и лизосом. Здесь происходит активная реабсорбция многих веществ (глюкозы, аминокислот, ионов натрия, калия, кальция и фосфатов). В проксимальные канальцы поступает примерно 180 л клубочкового ультрафильтрата, а 65-80% воды и натрия реабсорбируется обратно. Таким образом, в результате этого значительно уменьшается объем первичной мочи без изменения ее концентрации. Петля Генле. Прямая часть проксимального канальца, переходит в нисходящее колено петли Генле. Форма эпителиальных клеток становится менее вытянутой, уменьшается число микроворсинок. Восходящий отдел петли имеет тонкую и толстую части и заканчивается в плотном пятне. Клетки стенок толстых сегментов петли Генле крупные, содержат много митохондрий, которые генерируют энергию для активного транспорта ионов натрия и хлора. Основной ионный переносчик этих клеток – NKCC2 ингибируется фуросемидом. Юкстагломерулярный аппарат (ЮГА) включает 3 типа клеток: клетки дистального канальцевого эпителия на примыкающей к клубочку стороне (плотное пятно), экстрагломеруллярные мезангиальные клетки и гранулярные клетки в стенках афферентных артериол, продуцирующие ренин. (Рис. 7).

Дистальный каналец. За плотным пятном (macula densa) начинается дистальный каналец, переходящий в собирательную трубку. В дистальных канальцах всасывается около 5% Na первичной мочи. Переносчик ингибируется диуретиками из группы тиазидов. Собирательные трубки имеют три отдела: кортикальный, наружный и внутренний медуллярный. Внутренние медуллярные участки собирательной трубки впадают в сосочковый проток, открывающийся в малую чашечку. Собирательные трубки содержат два типа клеток: основные («светлые») и вставочные («темные»). По мере перехода кортикального отдела трубки в медуллярный уменьшается число вставочных клеток. Основные клетки содержат натриевые каналы, работа которых ингибируется диуретиками амилоридом, триамтереном. Во вставочных клетках нет Na + /K + -АТФазы, но содержатся Н + -АТФаза. В них осуществляется секреция Н + и реабсорбция Сl — . Таким образом, в собирательных трубках осуществляется конечный этап обратного всасывания NaCl перед выходом мочи из почек.

Интерстициальные клетки почек. В корковом слое почек интерстиций выражен слабо, тогда как в мозговом слое он более заметен. Корковое вещество почек содержит два типа интерстициальных клеток – фагоцитирующие и фибробластоподобные. Фибробластоподобные интерстициальные клетки продуцируют эритропоэтин. В мозговом веществе почек имеется три типа клеток. В цитоплазме клеток одного из этих типов содержатся мелкие липидные клетки, служащие исходным материалом для синтеза простагландинов.



Нефрон является не только основной структурной, но также и функциональной единицей почки. Именно здесь проходят самые важные этапы Поэтому информация о том, как выглядит строение нефрона, и какие именно функции он выполняет, будет весьма интересной. Кроме того, особенности функционирования нефронов могут прояснить нюансы работы почечной системы

Строение нефрона: почечное тельце

Интересно, что в зрелой почке здорового человека находится от 1 до 1,3 миллиардов нефронов. Нефрон — это функциональная и структурная единица почки, которая состоит из почечного тельца и так называемой петли Генле.

Само почечное тельце состоит из мальпигиевого клубочка и капсулы Боумена — Шумлянского. Для начала стоит отметить, что клубочек на самом деле представляет собой совокупность мелких капилляров. Кровь попадает сюда через приносную артерию — здесь фильтруется плазма. Остаток крови выводится выносящей артериолой.

Капсула Боумена — Шумлянского состоит из двух листков — внутреннего и внешнего. И если внешний лист представляет собой обыкновенную ткань из то строение внутреннего листа заслуживает большего внимания. Внутренняя часть капсулы покрыта подоцитами — это клетки, которые выполняют роль дополнительного фильтра. Они пропускают глюкозу, аминокислоты и прочие вещества, но препятствуют движению больших протеиновых молекул. Таким образом, в почечном тельце образуется первичная моча, которая отличается от лишь отсутствием крупных молекул.

Нефрон: строение проксимального канальца и петли Генле

Проксимальный каналец представляет собой образование, которое соединяет почечное тельце и петлю Генле. Внутри каналец имеет ворсинки, которые увеличивают общую площадь внутреннего просвета, тем самым увеличивая показатели реабсорбции.

Проксимальный каналец плавно переходит в нисходящую часть петли Генле, которая характеризируется небольшим диаметром. Петля опускается в мозговой слой, где огибает собственную ось на 180 градусов и поднимается вверх — здесь начинается восходящая часть петли Генле, которая имеет гораздо большие размеры и, соответственно, диаметр. Восходящая петля поднимается примерно до уровня клубочка.

Строение нефрона: дистальные канальцы

Восходящая часть петли Генле в корковом веществе переходит в так называемый дистальный извилистый каналец. Он соприкасается с клубочком и контактирует с приносной и выносной артериолами. Здесь осуществляется конечная абсорбция полезных веществ. Дистальный каналец переходит в конечный отдел нефрона, который в свою очередь впадает в собирательную трубку, несущую жидкость в

Классификация нефронов

В зависимости от места расположения принято выделять три основных типа нефронов:

  • кортикальные нефроны составляют примерно 85% от количества всех структурных единиц в почке. Как правило, они расположены во внешней коре почки, о чем, собственно, и свидетельствует их название. Строение нефрона этого типа немного отличается — петля Генле здесь небольшая;
  • юкстамедуллярные нефроны — такие структуры находятся как раз между мозговым и корковым слоем, имеют длинные петли Генле, которые глубоко проникают в мозговой слой, иногда даже достигая пирамид;
  • субкапсулярные нефроны — структуры, которые расположены непосредственно под капсулой.

Можно заметить, что строение нефрона полностью соответствует его функциям.

Почка имеет сложное строение и состоит примерно из 1 миллиона структурных и функциональных единиц — нефронов (рис.100). Между нефронами находится соединительная (интерстициальная) ткань.

Функциональной единицей нефрон является потому, что он способен осуществить всю совокупность процессов, результатом которых является образование мочи.

Рис. 100. Схема строения нефрона (по Г. Смиту). 1 — клубочек; 3 — извитой каналец первого порядка; 3 — нисходящая часть петли Генле; 4 — восходящая часть петли Генле; 5 — извитой каналец второго порядка; 6 — собирательные трубки. В кружках изображено строение эпителия в различных частях нефрона.

Каждый нефрон начинается небольшой капсулой, имеющей форму двухстенной чаши (капсула Шумлянского-Боумена), внутри которой находится клубочек капиляров (мальпигиев клубочек).

Между стенками капсулы имеется полость, от которой начинается просвет канальца. Внутренний листок капсулы образован плоскими мелкими эпителиальными клетками. Как показали электронномикроскопические исследования, эти клетки, между которыми имеются щели, расположены на базальной мембране, состоящей из трех слоев молекул.

В клетках эндотелия капилляров мальпигиевого клубочка и отверстия диаметром около 0,1 мк. Таким образом, барьер между кровью, находящейся в капиллярах клубочка, и полостью капсулы образованы тонкой базальной мембраной.

От полости капсулы отходит мочевой каналец, имеющий вначале извитую форму, — извитой каналец первого порядка. Дойдя до границы между корковым и мозговым слоем, каналец суживается и выпрямляется. В мозговом слое почки он образует петлю Генле и возвращается в корковый слой почки. Таким образом, петля Генле состоит из нисходящей, или проксимальной, и восходящей, или дистальной, части.

В корковом слое почки или на границе мозгового и коркового слоев прямой каналец вновь приобретает извитую форму, образуя извитой каналец второго порядка. Последний впадает в выводной проток-собирательную рубку. Значительное количество таких собирательных трубок, сливаясь, образует общие выводные протоки, которые проходят через мозговой слой почки к верхушкам сосочков, выступающим в полость почечной лоханки.

Диаметр каждой капсулы Шумлянского-Боумена около 0,2 мм, а общая длина канальцев одного нефрона достигает 35-50 мм.

Кровоснабжение почек . Артерии почек, разветвляясь на все более мелкие сосуды, образуют артериолы, каждая из которых входит в капсулу Шумлянского-Боумена и здесь распадается примерно на 50 капиллярных петель, образующих мальпигиев клубочек.

Сливаясь вместе, капилляры вновь образуют артериолу, выходящую из клубочка. Артериола, доставляющая кровь к клубочку, называется приносящим сосудом (vas affereos). Артериола, по которой кровь оттекает из клубочка, называется выносящим сосудом (vas efferens). Диаметр артериолы, выходящей из капсулы, уже, чем приходящей в капсулу. Вышедшая из клубочка артериола на коротком расстоянии от него вновь разветвляется на капилляры и образует густую капиллярную сеть, оплетающую извитые канальцы первого и второго порядка (рис. 101, А ). Таким образом кровь, прошедшая через капилляры клубочка, проходит затем через капилляры канальцев. Кроме того, кровоснабжение канальцев осуществляется капиллярами, отходящими от небольшого числа артериол, которые не учавствуют в образовании мальпигиевого клубочка.

Пройдя через сеть капилляров канальцев, кровь поступает в мелкие вены, которые, сливаясь, образуют дуговые вены (venae arcuatae). При дальнейшем слиянии последних образуется почечная вена, впадающая в нижнюю полую вену.

Юкстамедуллярные нефроны . В сравнительно недавнее время показано, что в почке имеются, кроме описанных выше нефронов, еще и другие, отличающиеся по положению и кровоснабжению,- юкстамедуллярные нефроны. Юкстамедуллярные нефроны расположены почти целиком в мозговом слое почки. Их клубочки находятся между корковым и мозговым слоем, а петля Генле располагается у границы с почечной лоханкой.

Кровоснабжение юкстамедуллярного нефрона отличается от кровоснабжения коркового нефрона тем, что диаметр выносящего сосуда такой же, как и приносящего. Выходящая из клубочка артериола не образует капиллярной сети вокруг канальцев, а пройдя некоторый путь, впадает в венозную систему (рис. 101, Б ).

Юкстагломерулярный комплекс . В стенке приводящей артериолы у места ее вхождения в клубочек имеется утолщение, образованное миоэпителиальными клетками,- юкстагломерулярный (околоклубочковый) комплекс. Клетки этого комплекса обладают внутрисекреторной функцией, выделяя при уменьшении почечного кровотока ренин (стр. 123), участвующий в регуляции уровня артериального давления и имеющий, по-видимому, значение в поддержании нормального баланса электролитов.

Рис. 101. Схема коркового (А) и юкстамедуллярного (Б) нефронов и их кровоснабжения (по Г. Смиту). I — корневое вещество почки; II — мозговое вещество почки. 1 — артерии; 2 — клубочек и капсула; 3 — артериола, подходящая к мальпигиевому клубочку; 4 — артериола, выходящая из мальпигиевого клубочка и образующая капиллярную сеть вокруг канальцев коркового нефроны; 5 — артериола, выходящая из мальпигиевого клубочка юкстамедуллярного нефрона; 6 — венулы; 7 — собирательные трубки.

    Капсула нефрона (капсула Боумена-Шунлянского)

    Проксимальный извитой каналец

    Проксимальный прямой каналец

    Петля Генле

    Нисходящий отдел (тонкий)

    Калено петли

    Восходящий отдел (дистальный прямой каналец)

    Дистальный извитой каналец

В центре:

Различают три вида нефронов

    Истинные корковые нефроны (1%) — все отделы лежат в корковом веществе

    Промежуточные нефроны (79%) – калено петли погружается в мозговое вещество, а остальные лежат в корковом веществе

    Юкста-медулярные (околомозговые) (20%) – у них петля полностью лежит в мозговом веществе, остальные отделы располагаются на границе между корковым и мозговым веществом.

Функция первых двух нефронов : участие в мочеобразовании.

Функция третьего нефрона: выполняет роль шунта при большой физической нагрузки сбрасывает больший объём крови и выполняют эндокринную функцию.

Кровоснабжение нефронов

Оно делится на:

1.Картикальной (корковое) – кровоснабжение 1,2 нефронов

2.Юксто-медулярное — кровоснабжение 3 нефрона

Кровоснабжение картикальных нефронов:

В ворота почки входят почечная артерия, далее междолевая, далее дуговая (находится на границе между корковым и мозговым веществом), далее междольковая, далее приносящая артериола, которая подходит к капсуле нефрона, далее сосудистый клубочек, образованный сетью капилляров (чудесная сеть), далее выносящая артериола, далее вторичная сеть капилляров, далее отток крови. От подкапсулярной части кровь собирается в звездчатую вену, от которой отходит междольковая вена. От остальной части коркового вещества венулы открываются в междольковую вену, от нее дуговая вена, междолевая вена и почечная вена. Приносящая и выносящие артериолы разного диаметра, выносящая меньше приносящей. Разность давления в артериолах обуславливает высокое давление в сосудистом клубочке (70-90 мм. рт.ст.). вторичная четь капилляров оплетает почечные канальцы и имеет низкое давление крови (10-12 мм. рт.ст.).

Особенности кровоснабжения юкста-медулярных нефронов:

1.Приносящая и выносящая артериолы одинакового диаметра, поэтому в сосудистом клубочке не высокое давление, процесс фильтрации не возможен.

2.Выносящая артериола образует вторичную сеть капилляров и прямую артерию, которая идет в мозговое вещество и там разветвляется на капиллярную сеть (образуется в результате 3 капиллярных сети).

3.Отток крови осуществляется через прямую вену, идущую из мозгового вещества, далее дуговая, далее междолевая и почечная вена.

Строение отделов нефрона и процесс мочеобразования:

В процессе мочеобразования выделяют три фазы:

    Фильтрация (образование первичной мочи) – процесс фильтрации происходит в почечном тельце, которое состоит из капсулы нефрона и сосудистого клубочка. Сосудистый клубочек образован капиллярами в количестве 50-100, располагающихся в виде петель. Капсула нефрона имеет вид двухстенной чаши, в ней выделяют:

    Наружный листок – образован однослойным плоским эпителием, переходящим в кубический.

    Внутренний листок – образован клетками подоцитами. Клетки подоциты имеют уплощенную форму, их безъядерная часть образует выросты – цитотрабекулы, от которых отходят цитопогии. Клетки располагаются на трехслойной базальной мембране. В базальной мембране наружный и внутренние слои светлые, в них мало коллагеновых волокон, но много аморфного вещества. Средний слой мембраны темный, состоит из пучков коллагеновых волокон, которые располагаются, не упорядоченно и формируют сеть. Диаметр ячеек постоянен и равен 7 нм (эта базальная мембрана обладает избирательной проницаемостью). К этой же базально мембране со стороны капилляра прилежит финестрированный эндотелий. Клетки подоциты, трехслойная базальная мембрана и финестрированный эндотелий формируют фильтрационный барьер, через который в полость капсулы поступает первичная моча. Это плазма крови лишенная высокомолекулярных белков.

Процесс фильтрации обусловлен разностью давления между высоким давление в сосудистом клубочке и низким давлением в полости капсулы (обусловлено разностью давления приносящей и выносящей артериолы).

    Реабсорбция

    Подкисления

Первичная моча поступает в проксимальный каналец, это трубочка с диаметром 50 микрон, в стенке выделяют: однослойный кубический или низко призматический эпителий, клетки имеют в апикальной части микроворсинки формирующие каемку, а в базальной части базальную исчерченность (складки плазмалеммы и митохондрии). Имеет округлые ядра и пиноцитозные пузырьки. Через стенку проксимального канальца в кровь поступают глюкоза, аминокислоты, которые образуются после расщепления низко молекулярных белков и некоторые электролиты. Микроворсинки будут иметь щелочную-фасфотазу. Это обязательный процесс, будет зависеть от концентрации веществ в крови. Процесс называется облигатная ре-абсорбция. Далее происходит процесс факультативной ре-абсорбции.

Нефрон является основной составляющей единицей почки человека. Он не только образует структуру почки, но и отвечает за некоторые ее функции. Нефроны обеспечивают фильтрацию крови, происходящую в капсуле Шумлянского-Боумена, и последующую полезных элементов в канальцах и петлях Генле.

В каждой почке находится около миллиона нефронов длиной от 2 до 5 сантиметров. Количество этих единиц зависит от возраста человека: у пожилых людей их гораздо меньше, чем у молодых. В связи с тем, что нефроны не регенерируются, после 39 лет начинается процесс их ежегодного уменьшения на 1% от общего количества.

По мнению ученых, только 35% от всех нефронов выполняют поставленную задачу. Остальное их количество является своеобразным резервом для того, чтобы почка продолжала очищать организм даже в экстренных ситуациях. Стоит более подробно рассмотреть, как устроен нефрон и каковы его функции.

Какое строение имеет нефрон

Структурная единица почки имеет сложное строение. Примечательно, что каждая ее составляющая выполняет определенную функцию.

Нефрон устроен так, что внутри петля изначально не имеет отличий от проксимального канальца. Но чуть ниже просвет ее становится более узким и выступает в роли фильтра для натрия, поступающего в тканевую жидкость. Через какое-то время эта жидкость превращается в гипертоническую.

  • Дистальный каналец начальным отделом прикасается к капиллярному клубочку в том месте, где находятся приносящая и выносящая артерии. Этот каналец довольно узкий, внутри не имеет ворсинок, а снаружи покрыт складчатой базальной мембраной. Именно в нем происходит процесс реабсорбции Na и воды и секреция ионов водорода и аммиака.
  • Связующий каналец, куда моча поступает из дистального отдела и перемещается в собирательную трубку.
  • Собирательная трубочка считается завершающей частичкой канальцевой системы и сформирована выростом мочеточника.

Существует 3 типа трубочек: кортикальная, наружной зоны мозговоговещества и внутренней зоны мозгового вещества. Помимо этого, специалисты отмечают наличие сосочковых протоков, которые впадают малые почечные чашки. Именно в корковых и мозговых отделах трубочки и происходит процесс формирования окончательной мочи.

Возможны ли различия?

Схема строения нефрона может незначительно отличаться в зависимости от его вида. Разница между этими элементами заключается в их нахождении, глубине канальцев и месторасположении и габаритах клубков. Большую роль играет петля Генле и размер некоторых сегментов нефрона.

Типы нефронов

Медики различают 3 типа структурных элементов почек. Стоит более подробно описать каждый из них:

  • Поверхностный или корковый нефрон, представляющие собой тельца почки, расположенные в 1 миллиметре от ее капсулы. Они отличаются более короткой петлей Генле и составляют около 80% всего количества структурных единиц.
  • Интракортикальный нефрон, почечное тельце которого находится в среднем отделе коры. Петли Генле здесь как длинные, так и короткие.
  • Юкстамедуллярный нефрон с почечным тельцем, расположенным по верху границы коркового и мозгового вещества. Этот элемент имеет длинную петлю Генле.

Благодаря тому, что нефроны являются структурной и функциональной единицей почки и очищают организм от продуктов переработки веществ, в него поступающих, человек живет без шлаков и прочих вредных элементов. Если аппарат нефронов повредится, то это может спровоцировать интоксикацию всего организма, которая грозит почечной недостаточностью. Это говорит о том, что при малейших сбоях в работе почек стоит незамедлительно обращаться за квалифицированной помощью медиков.

Какие функции выполняют нефроны

Строение нефрона многофункционально: каждый отдельно взятый нефрон состоит из функционирующих элементов, которые работают слаженно и обеспечивают нормальную деятельность почки. Явления, наблюдающиеся в почках, условно подразделяют на несколько этапов:

  • Фильтрация. На первой стадии в капсуле Шумлянского образуется моча, которая фильтруется плазмой крови в клубочке капилляров. Такое явление осуществляется благодаря разнице между показателями давления внутри оболочки и капиллярного клубочка.

Кровь фильтруется своеобразной мембраной, после чего перемещается в капсулу. Состав первичной мочи практически идентичен составу плазмы крови, ибо он богат глюкозой, избытками солей, креатинином, аминокислотами и несколькими низкомолекулярными соединениями. Какое-то количество этих включений задерживается в организме, а какое-то из него выводится.

С учетом того, как нефрон функционирует, можно утверждать, что фильтрация протекает со скоростью 125 миллилитров в минуту. Схема его работы никогда не нарушается, что свидетельствует о переработке 100 – 150 литров первичной мочи каждые сутки.

  • Реабсорбция. На этой стадии первичная моча снова фильтруется, что нужно для того, чтобы в организм вернулись такие полезные вещества, как вода, соль, глюкоза и аминокислоты. Главным элементом здесь выступает проксимальный каналец, ворсинки внутри которого помогают увеличить объем и скорость всасывания.

Когда первичная моча идет по канальцу, практически вся жидкость уходит в кровь, в результате чего мочи остается не более 2 литров.

В реабсорбции принимают участие все элементы строения нефрона, в том числе капсула нефрона и петля Генле. Во вторичной моче отсутствуют нужные организму вещества, но в ней можно обнаружить мочевину, мочевую кислоту и прочие ядовитые включения, которые нужно вывести.

  • Секреция. В моче появляются ионы водорода, калия и аммиака, содержащиеся в крови. Они могут поступать из медикаментов или прочих токсичных соединений. Благодаря кальциевой секреции, организм избавляется от всех этих веществ, а кислотно-щелочной баланс полностью восстанавливается.

Когда моча минует почечное тельце, проходит через фильтрацию и переработку, она собирается в почечных лоханках, перемещается с помощью мочеточников в мочевой пузырь и выводится из организма.

Профилактические меры гибели нефронов

Для нормального функционирования организма достаточно третьей части всех имеющихся в нем структурных элементов почек. Оставшиеся частички подключаются к работе во время повышенной нагрузки. Примером тому служит операция, в ходе которой была удалена одна почка. Данный процесс подразумевает возложение нагрузки на оставшийся орган. В этом случае все отделы нефрона, находящиеся в резерве, становятся активными и выполняют положенные функции.

Такой режим работы справляется с фильтрацией жидкости и дает возможность организму не почувствовать отсутствие одной почки.

Для того чтобы предотвратить опасное явление, при котором нефрон исчезает, следует придерживаться нескольких несложных правил:

  • Избегать или своевременно лечить болезни мочеполовой системы.
  • Не допускать развития почечной недостаточности.
  • Правильно питаться и вести здоровый образ жизни.
  • Обращаться за помощью медиков при возникновении любых тревожных симптомов, которые свидетельствуют о развитии патологического процесса в организме.
  • Соблюдать элементарные правила личной гигиены.
  • Опасаться инфекций, передающихся половым путем.

Функциональная единица почки не способна восстанавливаться, поэтому болезни почек, травмы и механические повреждения приводят к тому, что количество нефронов сокращается навсегда. Этот процесс и объясняет тот факт, что современные ученые пытаются разработать такие механизмы, которые смогут восстановить функции нефронов и значительно улучшить работу почек.

Специалисты рекомендуют не запускать появившиеся болезни, ибо их легче предотвратить, чем излечить. Современная медицина добилась больших высот, поэтому многие заболевания успешно лечатся и не оставляют тяжелых осложнений.

просмотров



Источник: fistn.ru


Добавить комментарий